369 research outputs found

    Geometric, electronic and magnetic structure of Fex_{x}Oy+_{y}^{+} clusters

    Get PDF
    Correlation between geometry, electronic structure and magnetism of solids is both intriguing and elusive. This is particularly strongly manifested in small clusters, where a vast number of unusual structures appear. Here, we employ density functional theory in combination with a genetic search algorithm, GGA+U+U and a hybrid functional to determine the structure of gas phase Fex_{x}Oy+/0_{y}^{+/0} clusters. For Fex_{x}Oy_{y} cation clusters we also calculate the corresponding vibration spectra and compare them with experiments. We successfully identify Fe3_{3}O4+_{4}^{+}, Fe4_{4}O5+_{5}^{+}, Fe4_{4}O6+_{6}^{+}, Fe5_{5}O7+_{7}^{+} and propose structures for Fe6_{6}O8+_{8}^{+}. Within the triangular geometric structure of Fe3_{3}O4+_{4}^{+} a non-collinear, ferrimagnetic and ferromagnetic state are comparable in energy. Fe4_{4}O5+_{5}^{+} and Fe4_{4}O6+_{6}^{+} are ferrimagnetic with a residual magnetic moment of 1~\muB{} due to ionization. Fe5_{5}O7+_{7}^{+} is ferrimagnetic due to the odd number of Fe atoms. We compare the electronic structure with bulk magnetite and find Fe4_{4}O5+_{5}^{+}, Fe4_{4}O6+_{6}^{+}, Fe6_{6}O8+_{8}^{+} to be mixed valence clusters. In contrast, in Fe3_{3}O4+_{4}^{+} and Fe5_{5}O7+_{7}^{+} all Fe are found to be trivalent.Comment: 14 pages, 21 figure

    First-principles calculations of the crystal structure, electronic structure, and thermodynamic stability of Be(BH4)2

    Get PDF
    Alanates and boranates are intensively studied because of their potential use as hydrogen storage materials. In this paper, we present a first-principles study of the electronic structure and the energetics of beryllium boranate BeBH42. From total energy calculations, we show that—in contrast to the other boranates and alanates—hydrogen desorption directly to the elements is likely and is at least competitive with desorption to the elemental hydride BeH2. The formation enthalpy of BeBH42 is only −0.14 eV/H2 at T=0 K. This low value can be rationalized by the participation of all atoms in the covalent bonding, which is in contrast to the ionic bonding observed in other boranates. From calculations of thermodynamic properties at finite temperature, we estimate a decomposition temperature of 162 K at a pressure of 1 bar

    Ab initio study on the effects of transition metal doping of Mg2NiH4

    Get PDF
    Mg2NiH4 is a promising hydrogen storage material with fast (de)hydrogenation kinetics. Its hydrogen desorption enthalpy, however, is too large for practical applications. In this paper we study the effects of transition metal doping by first-principles density functional theory calculations. We show that the hydrogen desorption enthalpy can be reduced by ~0.1 eV/H2 if one in eight Ni atoms is replaced by Cu or Fe. Replacing Ni by Co atoms, however, increases the hydrogen desorption enthalpy. We study the thermodynamic stability of the dopants in the hydrogenated and dehydrogenated phases. Doping with Co or Cu leads to marginally stable compounds, whereas doping with Fe leads to an unstable compound. The optical response of Mg2NiH4 is also substantially affected by doping. The optical gap in Mg2NiH4 is ~1.7 eV. Doping with Co, Fe or Cu leads to impurity bands that reduce the optical gap by up to 0.5 eV.Comment: 8 pages, 4 figure

    Interactions of adsorbed CO2_2 on water ice at low temperatures

    Get PDF
    We present a computational study into the adsorption properties of CO2_2 on amorphous and crystalline water surfaces under astrophysically relevant conditions. Water and carbon dioxide are two of the most dominant species in the icy mantles of interstellar dust grains and a thorough understanding of their solid phase interactions at low temperatures is crucial for understanding the structural evolution of the ices due to thermal segregation. In this paper, a new H2_2O-CO2_2 interaction potential is proposed and used to model the ballistic deposition of CO2_2 layers on water ice surfaces, and to study the individual binding sites at low coverages. Contrary to recent experimental results, we do not observe CO2_2 island formation on any type of water substrate. Additionally, density functional theory calculations are performed to assess the importance of induced electrostatic interactions.Comment: Accepted for publication in Physical Chemistry Chemical Physic

    Low work function of the (1000) Ca2N surface

    Get PDF
    Polymer diodes require cathodes that do not corrode the polymer but do have low work function to minimize the electron injection barrier. First-principles calculations demonstrate that the work function of the (1000) surface of the compound Ca2N is half an eV lower than that of the elemental metal Ca (2.35 vs. 2.87 eV). Moreover its reactivity is expected to be smaller. This makes Ca2N an interesting candidate to replace calcium as cathode material for polymer light emitting diode devices.Comment: 3 pages, 4 figures, accepted by J. Appl. Phy

    Tunable Hydrogen Storage in Magnesium - Transition Metal Compounds

    Get PDF
    Magnesium dihydride (\mgh) stores 7.7 weight % hydrogen, but it suffers from a high thermodynamic stability and slow (de)hydrogenation kinetics. Alloying Mg with lightweight transition metals (TM = Sc, Ti, V, Cr) aims at improving the thermodynamic and kinetic properties. We study the structure and stability of Mgx_xTM1−x_{1-x}H2_2 compounds, x=[0x=[0-1], by first-principles calculations at the level of density functional theory. We find that the experimentally observed sharp decrease in hydrogenation rates for x≳0.8x\gtrsim0.8 correlates with a phase transition of Mgx_xTM1−x_{1-x}H2_2 from a fluorite to a rutile phase. The stability of these compounds decreases along the series Sc, Ti, V, Cr. Varying the transition metal (TM) and the composition xx, the formation enthalpy of Mgx_xTM1−x_{1-x}H2_2 can be tuned over the substantial range 0-2 eV/f.u. Assuming however that the alloy Mgx_xTM1−x_{1-x} does not decompose upon dehydrogenation, the enthalpy associated with reversible hydrogenation of compounds with a high magnesium content (x=0.75x=0.75) is close to that of pure Mg.Comment: 8 pages, 5 figure

    NMR shieldings from density functional perturbation theory: GIPAW versus all-electron calculations

    Get PDF
    We present a benchmark of the density functional linear response calculation of NMR shieldings within the Gauge-Including Projector-Augmented-Wave method against all-electron Augmented-Plane-Wave++local-orbital and uncontracted Gaussian basis set results for NMR shieldings in molecular and solid state systems. In general, excellent agreement between the aforementioned methods is obtained. Scalar relativistic effects are shown to be quite large for nuclei in molecules in the deshielded limit. The small component makes up a substantial part of the relativistic corrections.Comment: 3 figures, supplementary material include

    Interrelation of work function and surface stability: the case of BaAl4

    Full text link
    The relationship between the work function (Phi) and the surface stability of compounds is, to our knowledge, unknown, but very important for applications such as organic light-emitting diodes. This relation is studied using first-principles calculations on various surfaces of BaAl4. The most stable surface [Ba terminated (001)] has the lowest Phi (1.95 eV), which is lower than that of any elemental metal including Ba. Adding barium to this surface neither increases its stability nor lowers its work function. BaAl4 is also strongly bound. These results run counter to the common perception that stability and a low Phi are incompatible. Furthermore, a large anisotropy and a stable low-work-function surface are predicted for intermetallic compounds with polar surfaces.Comment: 4 pages, 5 figures, to be published in Chem. Ma

    Half-metallicity and efficient spin injection in AlN/GaN:Cr (0001) heterostructure

    Get PDF
    First-principles investigations of the structural, electronic and magnetic properties of Cr-doped AlN/GaN (0001) heterostructures reveal that Cr segregates into the GaN region, that these interfaces retain their important half-metallic character and thus yield efficient (100 %) spin polarized injection from a ferromagnetic GaN:Cr electrode through an AlN tunnel barrier - whose height and width can be controlled by adjusting the Al concentration in the graded bandgap engineered Al(1-x)Ga(x)N (0001) layers.Comment: submitted for publicatio
    • …
    corecore